S3 Load
从 AWS S3 导入
StarRocks 支持通过以下方式从 AWS S3 导入数据:
- 使用 INSERT+
FILES()
进行同步导入。 - 使用 Broker Load 进行异步导入。
- 使用 Pipe 进行持续的异步导入。
三种导入方式各有优势,具体将在下面分章节详细阐述。
一般情况下,建议您使用 INSERT+FILES()
,更为方便易用。
但是,INSERT+FILES()
当前只支持 Parquet、ORC 和 CSV 文件格式。因此,如果您需要导入其他格式(如 JSON)的数据、或者需要在导入过程中执行 DELETE 等数据变更操作,可以使用 Broker Load。
如果需要导入超大数据(比如超过 100 GB、特别是 1 TB 以上的数据量),建议您使用 Pipe。Pipe 会按文件数量或大小,自动对目录下的文件进行拆分,将一个大的导入作业拆分成多个较小的串行的导入任务,从而降低出错重试的代价。另外,在进行持续性的数据导入时,也推荐使用 Pipe,它能监听远端存储目录的文件变化,并持续导入有变化的文件数据。
准备工作
准备数据源
确保待导入数据已保存在 S3 存储桶。建议您将数据保存在与 StarRocks 集群同处一个地域(Region)的 S3 存储桶,这样可以降低数据传输成本。
本文中,我们提供了样例数据集 s3://starrocks-examples/user-behavior-10-million-rows.parquet
,对所有合法的 AWS 用户开放。您只要配置真实有效的安全凭证,即可访问该数据集。
查看权限
导入操作需要目标表的 INSERT 权限。如果您的用户账号没有 INSERT 权限,请参考 GRANT 给用户赋权,语法为 GRANT INSERT ON TABLE <table_name> IN DATABASE <database_name> TO { ROLE <role_name> | USER <user_identity>}
。
获取资源访问配置
本文的示例均使用基于 IAM User 的认证方式。为确保您能够顺利访问存储在 AWS S3 中的数据,建议您根据“基于 IAM User 认证鉴权中介绍的准备工作,创建 IAM User、并配置 IAM 策略。
概括来说,如果选择使用基于 IAM User 的认证方式,您需要提前获取以下 AWS 资源信息:
- 数据所在的S3 存储桶
- S3 对象键(或“对象名称”)(只在访问 S3 存储桶中某个特定数据对象时才需要。注意,如果要访问的数据对象保存在子文件夹下,其名称可以包含前缀。)
- S3 存储桶所在的 AWS 地域(Region)
- 作为访问凭证的 Access Key 和 Secret Key
有关 StarRocks 支持的其他认证方式,参见配 置 AWS 认证信息。
通过 INSERT+FILES() 导入
该特性从 3.1 版本起支持。当前只支持 Parquet、ORC 和 CSV(自 v3.3.0 起)文件格式。
INSERT+FILES() 优势
FILES()
会根据给定的数据路径等参数读取数据,并自动根据数据文件的格式、列信息等推断出表结构,最终以数据行的形式返回文件中的数据。
通过 FILES()
,您可以:
- 使用 SELECT 语句直接从 AWS S3 查询数据。
- 通过 CREATE TABLE AS SELECT(简称 CTAS)语句实现自动建表和导入数据。
- 手动建表,然后通过 INSERT 导入数据。
操作示例
通过 SELECT 直接查询数据
您可以通过 SELECT+FILES()
直接查询 AWS S3 里的数据,从而在建表前对待导入数据有一个整体的了解,其优势包括:
- 您不需要存储数据就可以对其进行查看。
- 您可以查看数据的最大值、最小值,并确定需要使用哪些数据类型。
- 您可以检查数据中是否包含
NULL
值。
例如,查询样例数据集 s3://starrocks-examples/user-behavior-10-million-rows.parquet
中的数据:
SELECT * FROM FILES
(
"path" = "s3://starrocks-examples/user-behavior-10-million-rows.parquet",
"format" = "parquet",
"aws.s3.region" = "us-east-1",
"aws.s3.access_key" = "AAAAAAAAAAAAAAAAAAAA",
"aws.s3.secret_key" = "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
)
LIMIT 3;
说明
把上面命令示例中的
AAA
和BBB
替换成真实有效的 Access Key 和 Secret Key 作为访问凭证。由于这里使用的数据对象对所有合法的 AWS 用户开放,因此您填入任何真实有效的 Access Key 和 Secret Key 都可以。
系统返回如下查询结果:
+--------+---------+------------+--------------+---------------------+
| UserID | ItemID | CategoryID | BehaviorType | Timestamp |
+--------+---------+------------+--------------+---------------------+
| 543711 | 829192 | 2355072 | pv | 2017-11-27 08:22:37 |
| 543711 | 2056618 | 3645362 | pv | 2017-11-27 10:16:46 |
| 543711 | 1165492 | 3645362 | pv | 2017-11-27 10:17:00 |
+--------+---------+------------+--------------+---------------------
说明
以上返回结果中的列名是源 Parquet 文件中定义的列名。
通过 CTAS 自动建表并导入数据
该示例是上一个示例的延续。该示例中,通过在 CREATE TABLE AS SELECT (CTAS) 语句中嵌套上一个示例中的 SELECT 查询,StarRocks 可以自动推断表结构、创建表、并把数据导入新建的表中。Parquet 格式的文件自带列名和数据类型,因此您不需要指定列名或数据类型。
说明
使用表结构推断功能时,CREATE TABLE 语句不支持设置副本数,因此您需要在建表前把副本数设置好。例如,您可以通过如下命令设置副本数为
1
:ADMIN SET FRONTEND CONFIG ('default_replication_num' = "1");
通过如下语句创建数据库、并切换至该数据库:
CREATE DATABASE IF NOT EXISTS mydatabase;
USE mydatabase;
通过 CTAS 自动创建表、并把样例数据集 s3://starrocks-examples/user-behavior-10-million-rows.parquet
中的数据导入到新建表中:
CREATE TABLE user_behavior_inferred AS
SELECT * FROM FILES
(
"path" = "s3://starrocks-examples/user-behavior-10-million-rows.parquet",
"format" = "parquet",
"aws.s3.region" = "us-east-1",
"aws.s3.access_key" = "AAAAAAAAAAAAAAAAAAAA",
"aws.s3.secret_key" = "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
);
说明
把上面命令示例中的
AAA
和BBB
替换成真实有效的 Access Key 和 Secret Key 作为访问凭证。由于这里使用的数据对象对所有合法的 AWS 用户开放,因此您填入任何真实有效的 Access Key 和 Secret Key 都可以。
建表完成后,您可以通过 DESCRIBE 查看新建表的表结构:
DESCRIBE user_behavior_inferred;
系统返回如下查询结果:
+--------------+------------------+------+-------+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+------------------+------+-------+---------+-------+
| UserID | bigint | YES | true | NULL | |
| ItemID | bigint | YES | true | NULL | |
| CategoryID | bigint | YES | true | NULL | |
| BehaviorType | varchar(1048576) | YES | false | NULL | |
| Timestamp | varchar(1048576) | YES | false | NULL | |
+--------------+------------------+------+-------+---------+-------+
您可以查询新建表中的数据,验证数据已成功导入。例如:
SELECT * from user_behavior_inferred LIMIT 3;
系统返回如下查询结果,表明数据已成功导入:
+--------+---------+------------+--------------+---------------------+
| UserID | ItemID | CategoryID | BehaviorType | Timestamp |
+--------+---------+------------+--------------+---------------------+
| 225586 | 3694958 | 1040727 | pv | 2017-12-01 00:58:40 |
| 225586 | 3726324 | 965809 | pv | 2017-12-01 02:16:02 |
| 225586 | 3732495 | 1488813 | pv | 2017-12-01 00:59:46 |
+--------+---------+------------+--------------+---------------------+