- StarRocks
- 产品简介
- 快速开始
- 部署 StarRocks
- 表设计
- 导入数据
- 导出数据
- 查询数据源
- 查询加速
- 管理手册
- 参考手册
- SQL参考
- 用户账户管理
- 集群管理
- ADD SQLBLACKLIST
- ADMIN CANCEL REPAIR TABLE
- ADMIN CHECK TABLET
- ADMIN REPAIR TABLE
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE RESOURCE GROUP
- CREATE FILE
- DELETE SQLBLACKLIST
- DROP FILE
- DROP RESOURCE GROUP
- EXPLAIN
- INSTALL PLUGIN
- KILL
- SET
- SHOW BACKENDS
- SHOW BROKER
- SHOW COMPUTE NODES
- SHOW FILE
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROC
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW SQLBLACKLIST
- SHOW TABLE STATUS
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER MATERIALIZED VIEW
- ALTER TABLE
- ALTER VIEW
- ALTER RESOURCE
- ANALYZE TABLE
- BACKUP
- CANCEL ALTER TABLE
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE ANALYZE
- CREATE DATABASE
- CREATE EXTERNAL CATALOG
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE RESOURCE
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP ANALYZE
- DROP STATS
- DROP CATALOG
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP RESOURCE
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- HLL
- KILL ANALYZE
- RECOVER
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- SHOW ANALYZE JOB
- SHOW ANALYZE STATUS
- SHOW META
- SHOW RESOURCES
- SHOW FUNCTION
- TRUNCATE TABLE
- USE
- DML
- ALTER LOAD
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL REFRESH MATERIALIZED VIEW
- CANCEL EXPORT
- CREATE ROUTINE LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- REFRESH MATERIALIZED VIEW
- RESUME ROUTINE LOAD
- SELECT
- SHOW ALTER TABLE
- SHOW ALTER MATERIALIZED VIEW
- SHOW BACKUP
- SHOW CATALOGS
- SHOW CREATE CATALOG
- SHOW CREATE MATERIALIZED VIEW
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW MATERIALIZED VIEWS
- SHOW PARTITIONS
- SHOW PROPERTY
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- SPARK LOAD
- STOP ROUTINE LOAD
- STREAM LOAD
- SUBMIT TASK
- UPDATE
- 辅助命令
- 数据类型
- 关键字
- AUTO_INCREMENT
- 函数参考
- Java UDF
- 窗口函数
- Lambda 表达式
- 日期函数
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_format
- date_slice
- date_sub, subdate
- date_trunc
- datediff
- day
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_add
- hours_diff
- hours_sub
- microseconds_add
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- months_sub
- now
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_days
- to_date
- unix_timestamp
- utc_timestamp
- week
- weekofyear
- weeks_add
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- 字符串函数
- append_trailing_char_if_absent
- ascii
- char
- char_length
- character_length
- concat
- concat_ws
- ends_with
- find_in_set
- group_concat
- hex_decode_binary
- hex_decode_string
- hex
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- money_format
- null_or_empty
- parse_url
- repeat
- replace
- reverse
- right
- rpad
- rtrim
- space
- split
- split_part
- starts_with
- strleft
- strright
- substring
- trim
- ucase
- unhex
- upper
- 聚合函数
- array_agg
- avg
- approx_count_distinct
- any_value
- bitmap
- bitmap_agg
- count
- grouping
- grouping_id
- hll_empty
- hll_hash
- hll_raw_agg
- hll_union
- hll_union_agg
- max
- max_by
- min
- multi_distinct_count
- multi_distinct_sum
- percentile_approx
- percentile_cont
- percentile_disc
- retention
- sum
- std
- stddev
- stddev_samp
- variance, variance_pop, var_pop
- var_samp
- window_funnel
- Array 函数
- array_agg
- array_append
- array_avg
- array_concat
- array_contains
- array_contains_all
- array_cum_sum
- array_difference
- array_distinct
- array_filter
- array_intersect
- array_join
- array_length
- array_map
- array_max
- array_min
- arrays_overlap
- array_position
- array_remove
- array_slice
- array_sort
- array_sortby
- array_sum
- array_to_bitmap
- reverse
- unnest
- Bitmap 函数
- bitmap_agg
- bitmap_and
- bitmap_andnot
- bitmap_contains
- bitmap_count
- bitmap_empty
- bitmap_from_string
- bitmap_hash
- bitmap_has_any
- bitmap_intersect
- bitmap_max
- bitmap_min
- bitmap_or
- bitmap_remove
- bitmap_to_array
- bitmap_to_base64
- base64_to_bitmap
- bitmap_to_string
- bitmap_union
- bitmap_union_count
- bitmap_union_int
- bitmap_xor
- intersect_count
- sub_bitmap
- to_bitmap
- JSON 函数
- Map 函数
- Bit 函数
- Binary 函数
- 加密函数
- 模糊/正则匹配函数
- 条件函数
- 百分位函数
- 标量函数
- 工具函数
- 地理位置函数
- cast 函数
- hash 函数
- 数学函数
- 系统变量
- 用户自定义变量
- 错误码
- 系统限制
- SQL参考
- 常见问题解答
- 性能测试
编辑
测试常见问题
部署
如何选择硬件和优化配置
硬件选择
- BE推荐16核64GB以上,FE推荐8核16GB以上。
- 磁盘可以使用HDD或者SSD。
- CPU必须支持AVX2指令集,
cat /proc/cpuinfo |grep avx2
确认有输出即可,如果没有支持,建议更换机器,StarRocks的向量化技术需要CPU指令集支持才能发挥更好的效果。 - 网络需要万兆网卡和万兆交换机。
参数配置
- 参数配置参考 配置参数
建模
如何合理地分区分桶
如何分区
- 通过合理的分区可以有效的裁剪scan的数据量。我们一般从数据的管理角度来选择分区键,选用时间或者区域作为分区键。
- 使用动态分区可以定期自动创建分区,比如每天创建出新的分区。
如何分桶
- 选择高基数的列来作为分桶键(如果有唯一ID就用这个列来作为 分桶键 即可),这样保证数据在各个bucket中尽可能均衡,如果碰到数据倾斜严重的,数据可以使用多列作为分桶键(但一般不要太多)。
- 分桶的数量影响查询的并行度,最佳实践是计算一下数据存储量,将每个tablet设置成 100MB ~ 1GB 之间。
- 在机器比较少的情况下,如果想充分利用机器资源可以考虑使用
BE数量 * cpu core / 2
来设置bucket数量。例如有100GB的CSV文件(未压缩),导入StarRocks,有4台BE,每台64C,只有一个分区,那么可以采用 bucket数量4 * 64 /2 = 128
,这样每个tablet的数据也在781MB,同时也能充分利用CPU资源。
排序键设计
- 排序键要根据查询的特点来设计。
- 将经常作为过滤条件和group by的列作为排序键可以加速查询。
- 如果是有大量点查,建议把查询点查的ID放到第一列。例如 查询主要类型是
select sum(revenue) from lineorder where user_id='aaa100'
; 并且有很高的并发,强烈推荐把user_id 作为排序键的第一列。 - 如果查询的主要是聚合和scan比较多,建议把低基数的列放在前面。例如 查询的主要类型是
select region, nation, count(*) from lineorder_flat group by region, nation
,把region作为第一列、nation作为第二列会更合适。低基数的列放在前面可以有助于数据局部性。
合理选择数据类型
- 用尽量精确的类型。比如能够使用整形就不要用字符串类型,能够使用int就不要使用bigint,精确的数据类型能够更好的发挥数据库的性能。
查询
如何合理地设置并行度
您可以通过设置 Pipeline 执行引擎变量(推荐),或者设置一个 Fragment 实例的并行数量,来设置查询并行度,从而提高CPU资源利用率和查询效率。设置方式,请参见查询并行度相关参数。