- StarRocks
- Introduction to StarRocks
- Quick Start
- Deployment
- Deployment overview
- Prepare
- Deploy
- Deploy classic StarRocks
- Deploy and use shared-data StarRocks
- Manage
- Table Design
- Data Loading
- Concepts
- Overview of data loading
- Load data from a local file system or a streaming data source using HTTP PUT
- Load data from HDFS or cloud storage
- Continuously load data from Apache Kafka®
- Bulk load using Apache Sparkâ„¢
- Load data using INSERT
- Load data using Stream Load transaction interface
- Realtime synchronization from MySQL
- Continuously load data from Apache Flink®
- Change data through loading
- Transform data at loading
- Data Unloading
- Query Data Sources
- Query Acceleration
- Gather CBO statistics
- Synchronous materialized view
- Asynchronous materialized view
- Colocate Join
- Lateral Join
- Query Cache
- Index
- Computing the Number of Distinct Values
- Sorted streaming aggregate
- Administration
- Management
- Data recovery
- User Privilege and Authentication
- Performance Tuning
- Reference
- SQL Reference
- User Account Management
- Cluster Management
- ADD SQLBLACKLIST
- ADMIN CANCEL REPAIR TABLE
- ADMIN CHECK TABLET
- ADMIN REPAIR TABLE
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- CREATE RESOURCE GROUP
- DELETE SQLBLACKLIST
- DROP FILE
- DROP RESOURCE GROUP
- EXPLAIN
- INSTALL PLUGIN
- KILL
- SET
- SHOW BACKENDS
- SHOW BROKER
- SHOW COMPUTE NODES
- SHOW FILE
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROC
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW SQLBLACKLIST
- SHOW TABLE STATUS
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER MATERIALIZED VIEW
- ALTER TABLE
- ALTER VIEW
- ALTER RESOURCE
- ANALYZE TABLE
- BACKUP
- CANCEL ALTER TABLE
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE ANALYZE
- CREATE DATABASE
- CREATE EXTERNAL CATALOG
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE RESOURCE
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP ANALYZE
- DROP STATS
- DROP CATALOG
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP RESOURCE
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- HLL
- KILL ANALYZE
- RECOVER
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- SHOW ANALYZE JOB
- SHOW ANALYZE STATUS
- SHOW META
- SHOW RESOURCES
- SHOW FUNCTION
- TRUNCATE TABLE
- USE
- DML
- ALTER LOAD
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL EXPORT
- CANCEL REFRESH MATERIALIZED VIEW
- CREATE ROUTINE LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- REFRESH MATERIALIZED VIEW
- RESUME ROUTINE LOAD
- SELECT
- SHOW ALTER TABLE
- SHOW ALTER MATERIALIZED VIEW
- SHOW BACKUP
- SHOW CATALOGS
- SHOW CREATE CATALOG
- SHOW CREATE MATERIALIZED VIEW
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW MATERIALIZED VIEWS
- SHOW PARTITIONS
- SHOW PROPERTY
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- SPARK LOAD
- STOP ROUTINE LOAD
- STREAM LOAD
- SUBMIT TASK
- UPDATE
- Auxiliary Commands
- Data Types
- Keywords
- AUTO_INCREMENT
- Function Reference
- Java UDFs
- Window functions
- Lambda expression
- Aggregate Functions
- array_agg
- avg
- any_value
- approx_count_distinct
- bitmap
- bitmap_agg
- count
- grouping
- grouping_id
- hll_empty
- hll_hash
- hll_raw_agg
- hll_union
- hll_union_agg
- max
- max_by
- min
- multi_distinct_sum
- multi_distinct_count
- percentile_approx
- percentile_cont
- percentile_disc
- retention
- stddev
- stddev_samp
- sum
- variance, variance_pop, var_pop
- var_samp
- window_funnel
- Array Functions
- array_agg
- array_append
- array_avg
- array_concat
- array_contains
- array_contains_all
- array_cum_sum
- array_difference
- array_distinct
- array_filter
- array_intersect
- array_join
- array_length
- array_map
- array_max
- array_min
- array_position
- array_remove
- array_slice
- array_sort
- array_sortby
- array_sum
- arrays_overlap
- array_to_bitmap
- cardinality
- element_at
- reverse
- unnest
- Bit Functions
- Bitmap Functions
- base64_to_bitmap
- bitmap_agg
- bitmap_and
- bitmap_andnot
- bitmap_contains
- bitmap_count
- bitmap_from_string
- bitmap_empty
- bitmap_has_any
- bitmap_hash
- bitmap_intersect
- bitmap_max
- bitmap_min
- bitmap_or
- bitmap_remove
- bitmap_to_array
- bitmap_to_base64
- bitmap_to_string
- bitmap_union
- bitmap_union_count
- bitmap_union_int
- bitmap_xor
- intersect_count
- sub_bitmap
- to_bitmap
- JSON Functions
- Overview of JSON functions and operators
- JSON operators
- JSON constructor functions
- JSON query and processing functions
- Map Functions
- Binary Functions
- Conditional Functions
- Cryptographic Functions
- Date Functions
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_format
- date_slice
- date_sub, subdate
- date_trunc
- datediff
- day
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_add
- hours_diff
- hours_sub
- microseconds_add
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- months_sub
- now
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_date
- to_days
- unix_timestamp
- utc_timestamp
- week
- week_iso
- weekofyear
- weeks_add
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- Geographic Functions
- Math Functions
- String Functions
- append_trailing_char_if_absent
- ascii
- char
- char_length
- character_length
- concat
- concat_ws
- ends_with
- find_in_set
- group_concat
- hex
- hex_decode_binary
- hex_decode_string
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- money_format
- null_or_empty
- parse_url
- repeat
- replace
- reverse
- right
- rpad
- rtrim
- space
- split
- split_part
- starts_with
- strleft
- strright
- substring
- trim
- ucase
- unhex
- upper
- Pattern Matching Functions
- Percentile Functions
- Scalar Functions
- Utility Functions
- cast function
- hash function
- System variables
- User-defined variables
- Error code
- System limits
- SQL Reference
- FAQ
- Benchmark
- Developers
- Contribute to StarRocks
- Code Style Guides
- Use the debuginfo file for debugging
- Development Environment
- Trace Tools
- Integration
Stream Load
1. Does Stream Load support identifying column names held in the first row of the source data file? Or, does Stream Load support skipping the first row during data reading?
Stream Load does not support identifying column names held in the first row of the source data file. Stream Load considers the first row to be normal data like the other rows. Additionally, Stream Load does not support skipping the first row during data reading. If the first row holds column names, take one of the following actions:
- Modify the settings of the tool that you use to export the data. Then, re-export the data as a source data file that does not hold column names in the first row.
- Use commands such as
sed -i '1d' filename
to delete the first row of the source data file. - In the load command or statement, use
-H "where: <column_name> != '<column_name>'"
to filter out the first row of the source data file.<column_name>
is any of the column names held in the first row. Note that StarRocks first transforms and then filters the source data. Therefore, if the column names in the first row fail to be transformed into their matching destination data types,NULL
values are returned for them. This means the destination StarRocks table cannot contain columns that are set toNOT NULL
. - In the load command or statement, add
-H "max_filter_ratio:0.01"
to set a maximum error tolerance that is 1% or lower but can tolerate more than 1 error row, thereby allowing StarRocks to ignore the data transformation failures in the first row. In this case, the Stream Load job can still succeed even ifErrorURL
is returned to indicate error rows. Do not setmax_filter_ratio
to a large value. If you setmax_filter_ratio
to a large value, some important data quality issues may be missed.
2. The data to be loaded into the partition column is not of standard DATE or INT type. For example, the data is in a format like 202106.00. How do I transform the data if I load it by using Stream Load?
StarRocks supports transforming data at loading. For more information, see Transform data at loading.
Suppose that you want to load a CSV-formatted source data file named TEST
and the file consists of four columns, NO
, DATE
, VERSION
, and PRICE
, among which the data from the DATE
column is in a non-standard format such as 202106.00. If you want to use DATE
as the partition column in StarRocks, you need to first create a StarRocks table, for example, one that consists of the following four columns: NO
, VERSION
, PRICE
, and DATE
. Then, you need to specify the data type of the DATE
column of the StarRocks table as DATE, DATETIME, or INT. Finally, when you create a Stream Load job, you need to specify the following setting in the load command or statement to transform data from the source DATE
column's data type to the destination column's data type:
-H "columns: NO,DATE_1, VERSION, PRICE, DATE=LEFT(DATE_1,6)"
In the preceding example, DATE_1
can be considered to be a temporarily named column mapping the destination DATE
column, and the final results loaded into the destination DATE
column are computed by the left()
function. Note that you must first list the temporary names of the source columns and then use functions to transform data. The functions supported are scalar functions, including non-aggregate functions and window functions.
3. What do I do if my Stream Load job reports the "body exceed max size: 10737418240, limit: 10737418240" error?
The size of the source data file exceeds 10 GB, which is the maximum file size supported by Stream Load. Take one of the following actions:
- Use
seq -w 0 n
to split the source data file into smaller files. - Use
curl -XPOST http:///be_host:http_port/api/update_config?streaming_load_max_mb=<file_size>
to adjust the value of the BE configuration itemstreaming_load_max_mb
to increase the maximum file size.
- Stream Load
- 1. Does Stream Load support identifying column names held in the first row of the source data file? Or, does Stream Load support skipping the first row during data reading?
- 2. The data to be loaded into the partition column is not of standard DATE or INT type. For example, the data is in a format like 202106.00. How do I transform the data if I load it by using Stream Load?
- 3. What do I do if my Stream Load job reports the "body exceed max size: 10737418240, limit: 10737418240" error?