- StarRocks
- Introduction to StarRocks
- Quick Start
- Deployment
- Deployment overview
- Prepare
- Deploy
- Deploy shared-nothing StarRocks
- Deploy and use shared-data StarRocks
- Manage
- Table Design
- Understand StarRocks table design
- Table types
- Data distribution
- Data compression
- Sort keys and prefix indexes
- Data Loading
- Concepts
- Overview of data loading
- Load data from a local file system or a streaming data source using HTTP PUT
- Load data from HDFS
- Load data from cloud storage
- Load data from Apache Kafka®
- Continuously load data from Apache Kafka®
- Load data from Apache Sparkâ„¢
- Load data using INSERT
- Load data using Stream Load transaction interface
- Realtime synchronization from MySQL
- Continuously load data from Apache Flink®
- Change data through loading
- Transform data at loading
- Data Unloading
- Query Data Lakes
- Query Acceleration
- Gather CBO statistics
- Synchronous materialized views
- Asynchronous materialized views
- Colocate Join
- Lateral Join
- Query Cache
- Index
- Computing the Number of Distinct Values
- Sorted streaming aggregate
- Integrations
- Administration
- Management
- Data recovery
- User Privilege and Authentication
- Performance Tuning
- Reference
- SQL Reference
- User Account Management
- Cluster Management
- ADD SQLBLACKLIST
- ADMIN CANCEL REPAIR TABLE
- ADMIN CHECK TABLET
- ADMIN REPAIR TABLE
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER STORAGE VOLUME
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- CREATE RESOURCE GROUP
- CREATE STORAGE VOLUME
- DELETE SQLBLACKLIST
- DESC STORAGE VOLUME
- DROP FILE
- DROP RESOURCE GROUP
- DROP STORAGE VOLUME
- EXPLAIN
- INSTALL PLUGIN
- KILL
- SET
- SET DEFAULT STORAGE VOLUME
- SHOW BACKENDS
- SHOW BROKER
- SHOW COMPUTE NODES
- SHOW FILE
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROC
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW SQLBLACKLIST
- SHOW STORAGE VOLUMES
- SHOW TABLE STATUS
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER MATERIALIZED VIEW
- ALTER TABLE
- ALTER VIEW
- ALTER RESOURCE
- ANALYZE TABLE
- BACKUP
- CANCEL ALTER TABLE
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE ANALYZE
- CREATE DATABASE
- CREATE EXTERNAL CATALOG
- CREATE FUNCTION
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE RESOURCE
- CREATE TABLE
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE VIEW
- DROP ANALYZE
- DROP CATALOG
- DROP DATABASE
- DROP FUNCTION
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP RESOURCE
- DROP STATS
- DROP TABLE
- DROP VIEW
- HLL
- KILL ANALYZE
- RECOVER
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- SHOW ANALYZE JOB
- SHOW ANALYZE STATUS
- SHOW FUNCTION
- SHOW META
- SHOW RESOURCES
- TRUNCATE TABLE
- USE
- DML
- ALTER LOAD
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL EXPORT
- CANCEL REFRESH MATERIALIZED VIEW
- CREATE ROUTINE LOAD
- DELETE
- DROP TASK
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- REFRESH MATERIALIZED VIEW
- RESUME ROUTINE LOAD
- SELECT
- SHOW ALTER TABLE
- SHOW ALTER MATERIALIZED VIEW
- SHOW BACKUP
- SHOW CATALOGS
- SHOW CREATE CATALOG
- SHOW CREATE DATABASE
- SHOW CREATE MATERIALIZED VIEW
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW MATERIALIZED VIEWS
- SHOW PARTITIONS
- SHOW PROPERTY
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- SPARK LOAD
- STOP ROUTINE LOAD
- STREAM LOAD
- SUBMIT TASK
- UPDATE
- Auxiliary Commands
- Data Types
- Keywords
- Function Reference
- Function list
- Java UDFs
- Window functions
- Lambda expression
- Aggregate Functions
- any_value
- approx_count_distinct
- array_agg
- avg
- bitmap
- bitmap_agg
- count
- corr
- covar_pop
- covar_samp
- group_concat
- grouping
- grouping_id
- hll_empty
- hll_hash
- hll_raw_agg
- hll_union
- hll_union_agg
- max
- max_by
- min
- min_by
- multi_distinct_sum
- multi_distinct_count
- percentile_approx
- percentile_cont
- percentile_disc
- retention
- stddev
- stddev_samp
- sum
- variance, variance_pop, var_pop
- var_samp
- window_funnel
- Array Functions
- all_match
- any_match
- array_agg
- array_append
- array_avg
- array_concat
- array_contains
- array_contains_all
- array_cum_sum
- array_difference
- array_distinct
- array_filter
- array_generate
- array_intersect
- array_join
- array_length
- array_map
- array_max
- array_min
- array_position
- array_remove
- array_slice
- array_sort
- array_sortby
- array_sum
- arrays_overlap
- array_to_bitmap
- cardinality
- element_at
- reverse
- unnest
- Bit Functions
- Bitmap Functions
- base64_to_bitmap
- bitmap_agg
- bitmap_and
- bitmap_andnot
- bitmap_contains
- bitmap_count
- bitmap_from_string
- bitmap_empty
- bitmap_has_any
- bitmap_hash
- bitmap_intersect
- bitmap_max
- bitmap_min
- bitmap_or
- bitmap_remove
- bitmap_subset_in_range
- bitmap_subset_limit
- bitmap_to_array
- bitmap_to_base64
- bitmap_to_string
- bitmap_union
- bitmap_union_count
- bitmap_union_int
- bitmap_xor
- intersect_count
- sub_bitmap
- to_bitmap
- JSON Functions
- Overview of JSON functions and operators
- JSON operators
- JSON constructor functions
- JSON query and processing functions
- Map Functions
- Binary Functions
- Conditional Functions
- Cryptographic Functions
- Date Functions
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_diff
- date_format
- date_slice
- date_sub, subdate
- date_trunc
- datediff
- day
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_add
- hours_diff
- hours_sub
- last_day
- makedate
- microseconds_add
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- months_sub
- next_day
- now
- previous_day
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_date
- to_days
- unix_timestamp
- utc_timestamp
- week
- week_iso
- weekofyear
- weeks_add
- day_of_week_iso
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- Geographic Functions
- Math Functions
- String Functions
- append_trailing_char_if_absent
- ascii
- char
- char_length
- character_length
- concat
- concat_ws
- ends_with
- find_in_set
- group_concat
- hex
- hex_decode_binary
- hex_decode_string
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- money_format
- null_or_empty
- parse_url
- repeat
- replace
- reverse
- right
- rpad
- rtrim
- space
- split
- split_part
- starts_with
- strleft
- strright
- str_to_map
- substring
- trim
- ucase
- unhex
- upper
- url_decode
- url_encode
- Pattern Matching Functions
- Percentile Functions
- Scalar Functions
- Struct Functions
- Table Functions
- Utility Functions
- cast function
- hash function
- AUTO_INCREMENT
- Generated columns
- System variables
- User-defined variables
- Error code
- System limits
- AWS IAM policies
- SQL Reference
- FAQ
- Benchmark
- Ecosystem Release Notes
- Developers
- Contribute to StarRocks
- Code Style Guides
- Use the debuginfo file for debugging
- Development Environment
- Trace Tools
generate_series
Description
Generates a series of values within the interval specified by start
and end
, and with an optional step
.
generate_series() is a table function. A table function can return a row set for each input row. The row set can contain zero, one, or multiple rows. Each row can contain one or more columns.
To use generate_series() in StarRocks, you must enclose it in the TABLE keyword if the input parameters are constants. If the input parameters are expressions, such as column names, the TABLE keyword is not required (See Example 5).
This function is supported from v3.1.
Syntax
generate_series(start, end [,step])
Parameters
start
: the starting value of the series, required. Supported data types are INT, BIGINT, and LARGEINT.end
: the ending value of the series, required. Supported data types are INT, BIGINT, and LARGEINT.step
: the value to increment or decrement, optional. Supported data types are INT, BIGINT, and LARGEINT. If not specified, the default step is 1.step
can be either negative or positive, but cannot be zero.
The three parameters must have the same data type, for example, generate_series(INT start, INT end [, INT step])
.
Return value
Returns a series of values that have the same as the input parameters start
and end
.
- When
step
is positive, zero rows are returned ifstart
is greater thanend
. Conversely, whenstep
is negative, zero rows are returned ifstart
is less thanend
. - An error is returned if
step
is 0. - This function deals with nulls as follows: If any input parameter is a literal null, an error is reported. If any input parameter is an expression and the result of the expression is null, 0 rows are returned (See Example 5).
Examples
Example 1: Generate a sequence of values within the range [2,5] in ascending order with the default step 1
.
MySQL > select * from TABLE(generate_series(2, 5));
+-----------------+
| generate_series |
+-----------------+
| 2 |
| 3 |
| 4 |
| 5 |
+-----------------+
Example 2: Generate a sequence of values within the range [2,5] in ascending order with the specified step 2
.
MySQL > select * from TABLE(generate_series(2, 5, 2));
+-----------------+
| generate_series |
+-----------------+
| 2 |
| 4 |
+-----------------+
Example 3: Generate a sequence of values within the range [5,2] in descending order with the specified step -1
.
MySQL > select * from TABLE(generate_series(5, 2, -1));
+-----------------+
| generate_series |
+-----------------+
| 5 |
| 4 |
| 3 |
| 2 |
+-----------------+
Example 4: Zero rows are returned when step
is negative and start
is less than end
.
MySQL > select * from TABLE(generate_series(2, 5, -1));
Empty set (0.01 sec)
Example 5: Use table columns as the input parameters of generate_series(). In this use case, you do not need to use TABLE()
with generate_series().
CREATE TABLE t_numbers(start INT, end INT)
DUPLICATE KEY (start)
DISTRIBUTED BY HASH(start) BUCKETS 1;
INSERT INTO t_numbers VALUES
(1, 3),
(5, 2),
(NULL, 10),
(4, 7),
(9,6);
SELECT * FROM t_numbers;
+-------+------+
| start | end |
+-------+------+
| NULL | 10 |
| 1 | 3 |
| 4 | 7 |
| 5 | 2 |
| 9 | 6 |
+-------+------+
-- Generate multiple rows for rows (1,3) and (4,7) with step 1.
SELECT * FROM t_numbers, generate_series(t_numbers.start, t_numbers.end);
+-------+------+-----------------+
| start | end | generate_series |
+-------+------+-----------------+
| 1 | 3 | 1 |
| 1 | 3 | 2 |
| 1 | 3 | 3 |
| 4 | 7 | 4 |
| 4 | 7 | 5 |
| 4 | 7 | 6 |
| 4 | 7 | 7 |
+-------+------+-----------------+
-- Generate multiple rows for rows (5,2) and (9,6) with step -1.
SELECT * FROM t_numbers, generate_series(t_numbers.start, t_numbers.end, -1);
+-------+------+-----------------+
| start | end | generate_series |
+-------+------+-----------------+
| 5 | 2 | 5 |
| 5 | 2 | 4 |
| 5 | 2 | 3 |
| 5 | 2 | 2 |
| 9 | 6 | 9 |
| 9 | 6 | 8 |
| 9 | 6 | 7 |
| 9 | 6 | 6 |
+-------+------+-----------------+
The input row (NULL, 10)
has a NULL value and zero rows are returned for this row.
keywords
table function, generate series