- StarRocks
- Introduction to StarRocks
- Quick Start
- Deployment
- Deployment overview
- Prepare
- Deploy
- Deploy classic StarRocks
- Deploy and use shared-data StarRocks
- Manage
- Table Design
- Data Loading
- Concepts
- Overview of data loading
- Load data from a local file system or a streaming data source using HTTP PUT
- Load data from HDFS or cloud storage
- Continuously load data from Apache KafkaĀ®
- Bulk load using Apache Sparkā¢
- Load data using INSERT
- Load data using Stream Load transaction interface
- Realtime synchronization from MySQL
- Continuously load data from Apache FlinkĀ®
- Change data through loading
- Transform data at loading
- Data Unloading
- Query Data Sources
- Query Acceleration
- Gather CBO statistics
- Synchronous materialized view
- Asynchronous materialized view
- Colocate Join
- Lateral Join
- Query Cache
- Index
- Computing the Number of Distinct Values
- Sorted streaming aggregate
- Administration
- Management
- Data recovery
- User Privilege and Authentication
- Performance Tuning
- Reference
- SQL Reference
- User Account Management
- Cluster Management
- ADD SQLBLACKLIST
- ADMIN CANCEL REPAIR TABLE
- ADMIN CHECK TABLET
- ADMIN REPAIR TABLE
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- CREATE RESOURCE GROUP
- DELETE SQLBLACKLIST
- DROP FILE
- DROP RESOURCE GROUP
- EXPLAIN
- INSTALL PLUGIN
- KILL
- SET
- SHOW BACKENDS
- SHOW BROKER
- SHOW COMPUTE NODES
- SHOW FILE
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROC
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW SQLBLACKLIST
- SHOW TABLE STATUS
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER MATERIALIZED VIEW
- ALTER TABLE
- ALTER VIEW
- ALTER RESOURCE
- ANALYZE TABLE
- BACKUP
- CANCEL ALTER TABLE
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE ANALYZE
- CREATE DATABASE
- CREATE EXTERNAL CATALOG
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE RESOURCE
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP ANALYZE
- DROP STATS
- DROP CATALOG
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP RESOURCE
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- HLL
- KILL ANALYZE
- RECOVER
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- SHOW ANALYZE JOB
- SHOW ANALYZE STATUS
- SHOW META
- SHOW RESOURCES
- SHOW FUNCTION
- TRUNCATE TABLE
- USE
- DML
- ALTER LOAD
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL EXPORT
- CANCEL REFRESH MATERIALIZED VIEW
- CREATE ROUTINE LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- REFRESH MATERIALIZED VIEW
- RESUME ROUTINE LOAD
- SELECT
- SHOW ALTER TABLE
- SHOW ALTER MATERIALIZED VIEW
- SHOW BACKUP
- SHOW CATALOGS
- SHOW CREATE CATALOG
- SHOW CREATE MATERIALIZED VIEW
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW MATERIALIZED VIEWS
- SHOW PARTITIONS
- SHOW PROPERTY
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- SPARK LOAD
- STOP ROUTINE LOAD
- STREAM LOAD
- SUBMIT TASK
- UPDATE
- Auxiliary Commands
- Data Types
- Keywords
- AUTO_INCREMENT
- Function Reference
- Java UDFs
- Window functions
- Lambda expression
- Aggregate Functions
- array_agg
- avg
- any_value
- approx_count_distinct
- bitmap
- bitmap_agg
- count
- grouping
- grouping_id
- hll_empty
- hll_hash
- hll_raw_agg
- hll_union
- hll_union_agg
- max
- max_by
- min
- multi_distinct_sum
- multi_distinct_count
- percentile_approx
- percentile_cont
- percentile_disc
- retention
- stddev
- stddev_samp
- sum
- variance, variance_pop, var_pop
- var_samp
- window_funnel
- Array Functions
- array_agg
- array_append
- array_avg
- array_concat
- array_contains
- array_contains_all
- array_cum_sum
- array_difference
- array_distinct
- array_filter
- array_intersect
- array_join
- array_length
- array_map
- array_max
- array_min
- array_position
- array_remove
- array_slice
- array_sort
- array_sortby
- array_sum
- arrays_overlap
- array_to_bitmap
- cardinality
- element_at
- reverse
- unnest
- Bit Functions
- Bitmap Functions
- base64_to_bitmap
- bitmap_agg
- bitmap_and
- bitmap_andnot
- bitmap_contains
- bitmap_count
- bitmap_from_string
- bitmap_empty
- bitmap_has_any
- bitmap_hash
- bitmap_intersect
- bitmap_max
- bitmap_min
- bitmap_or
- bitmap_remove
- bitmap_to_array
- bitmap_to_base64
- bitmap_to_string
- bitmap_union
- bitmap_union_count
- bitmap_union_int
- bitmap_xor
- intersect_count
- sub_bitmap
- to_bitmap
- JSON Functions
- Overview of JSON functions and operators
- JSON operators
- JSON constructor functions
- JSON query and processing functions
- Map Functions
- Binary Functions
- Conditional Functions
- Cryptographic Functions
- Date Functions
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_format
- date_slice
- date_sub, subdate
- date_trunc
- datediff
- day
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_add
- hours_diff
- hours_sub
- microseconds_add
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- months_sub
- now
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_date
- to_days
- unix_timestamp
- utc_timestamp
- week
- week_iso
- weekofyear
- weeks_add
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- Geographic Functions
- Math Functions
- String Functions
- append_trailing_char_if_absent
- ascii
- char
- char_length
- character_length
- concat
- concat_ws
- ends_with
- find_in_set
- group_concat
- hex
- hex_decode_binary
- hex_decode_string
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- money_format
- null_or_empty
- parse_url
- repeat
- replace
- reverse
- right
- rpad
- rtrim
- space
- split
- split_part
- starts_with
- strleft
- strright
- substring
- trim
- ucase
- unhex
- upper
- Pattern Matching Functions
- Percentile Functions
- Scalar Functions
- Utility Functions
- cast function
- hash function
- System variables
- User-defined variables
- Error code
- System limits
- SQL Reference
- FAQ
- Benchmark
- Developers
- Contribute to StarRocks
- Code Style Guides
- Use the debuginfo file for debugging
- Development Environment
- Trace Tools
- Integration
map_filter
Description
Filters key-value pairs in a map by applying a Boolean array or a Lambda expression to each key-value pair. The pair that evaluates to true
is returned. This function is supported from v3.0.
From v2.5, StarRocks supports querying complex data types MAP and STRUCT from data lakes. MAP is an unordered collection of key-value pairs, for example, {"a":1, "b":2}
.
You can use external catalogs provided by StarRocks to query MAP and STRUCT data from Apache Hiveā¢, Apache Hudi, and Apache Iceberg. You can only query data from ORC and Parquet files. For more information about how to use external catalogs to query external data sources, see Overview of catalogs and topics related to the required catalog type.
Syntax
MAP map_filter(any_map, array<boolean>)
MAP map_filter(lambda_func, any_map)
map_filter(any_map, array<boolean>)
Evaluates key-value pairs in
any_map
one by one againstarray<boolean>
and returns key-value pairs that evaluate totrue
.map_filter(lambda_func, any_map)
Applies
lambda_func
to the key-value pairs inany_map
one by one and returns key-value pairs whose result istrue
.
Parameters
any_map
: the map value.array<boolean>
: the Boolean array used to evaluate the map value.lambda_func
: the Lambda expression used to evaluate the map value.
Return value
Returns a map whose data type is the same as any_map
.
If any_map
is NULL, NULL is returned. If array<boolean>
is null, an empty map is returned.
If a key or value in the map value is NULL, NULL is processed as a normal value.
The Lambda expression must have two parameters. The first parameter represents the key. The second parameter represents the value.
Examples
Use array<boolean>
The following example uses map_from_arrays() to generate a map value {1:"ab",3:"cdd",2:null,null:"abc"}
. Then each key-value pair is evaluated against array<boolean>
and the pair whose result is true
is returned.
mysql> select map_filter(col_map, array<boolean>[0,0,0,1,1]) from (select map_from_arrays([1,3,null,2,null],['ab','cdd',null,null,'abc']) as col_map)A;
+----------------------------------------------------+
| map_filter(col_map, ARRAY<BOOLEAN>[0, 0, 0, 1, 1]) |
+----------------------------------------------------+
| {null:"abc"} |
+----------------------------------------------------+
1 row in set (0.02 sec)
mysql> select map_filter(null, array<boolean>[0,0,0,1,1]);
+-------------------------------------------------+
| map_filter(NULL, ARRAY<BOOLEAN>[0, 0, 0, 1, 1]) |
+-------------------------------------------------+
| NULL |
+-------------------------------------------------+
1 row in set (0.02 sec)
mysql> select map_filter(col_map, null) from (select map_from_arrays([1,3,null,2,null],['ab','cdd',null,null,'abc']) as col_map)A;
+---------------------------+
| map_filter(col_map, NULL) |
+---------------------------+
| {} |
+---------------------------+
1 row in set (0.01 sec)
Use Lambda expression
The following example uses map_from_arrays() to generate a map value {1:"ab",3:"cdd",2:null,null:"abc"}
. Then each key-value pair is evaluated against the Lambda expression and the key-value pair whose value is not null is returned.
mysql> select map_filter((k,v) -> v is not null,col_map) from (select map_from_arrays([1,3,null,2,null],['ab','cdd',null,null,'abc']) as col_map)A;
+------------------------------------------------+
| map_filter((k,v) -> v is not null, col_map) |
+------------------------------------------------+
| {1:"ab",3:"cdd",null:'abc'} |
+------------------------------------------------+
1 row in set (0.02 sec)