- StarRocks
- Introduction to StarRocks
- Quick Start
- Deployment
- Deployment overview
- Prepare
- Deploy
- Deploy classic StarRocks
- Deploy and use shared-data StarRocks
- Manage
- Table Design
- Data Loading
- Concepts
- Overview of data loading
- Load data from a local file system or a streaming data source using HTTP PUT
- Load data from HDFS or cloud storage
- Continuously load data from Apache Kafka®
- Bulk load using Apache Sparkâ„¢
- Load data using INSERT
- Load data using Stream Load transaction interface
- Realtime synchronization from MySQL
- Continuously load data from Apache Flink®
- Change data through loading
- Transform data at loading
- Data Unloading
- Query Data Sources
- Query Acceleration
- Gather CBO statistics
- Synchronous materialized view
- Asynchronous materialized view
- Colocate Join
- Lateral Join
- Query Cache
- Index
- Computing the Number of Distinct Values
- Sorted streaming aggregate
- Administration
- Management
- Data recovery
- User Privilege and Authentication
- Performance Tuning
- Reference
- SQL Reference
- User Account Management
- Cluster Management
- ADD SQLBLACKLIST
- ADMIN CANCEL REPAIR TABLE
- ADMIN CHECK TABLET
- ADMIN REPAIR TABLE
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- CREATE RESOURCE GROUP
- DELETE SQLBLACKLIST
- DROP FILE
- DROP RESOURCE GROUP
- EXPLAIN
- INSTALL PLUGIN
- KILL
- SET
- SHOW BACKENDS
- SHOW BROKER
- SHOW COMPUTE NODES
- SHOW FILE
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROC
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW SQLBLACKLIST
- SHOW TABLE STATUS
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER MATERIALIZED VIEW
- ALTER TABLE
- ALTER VIEW
- ALTER RESOURCE
- ANALYZE TABLE
- BACKUP
- CANCEL ALTER TABLE
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE ANALYZE
- CREATE DATABASE
- CREATE EXTERNAL CATALOG
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE RESOURCE
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP ANALYZE
- DROP STATS
- DROP CATALOG
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP RESOURCE
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- HLL
- KILL ANALYZE
- RECOVER
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- SHOW ANALYZE JOB
- SHOW ANALYZE STATUS
- SHOW META
- SHOW RESOURCES
- SHOW FUNCTION
- TRUNCATE TABLE
- USE
- DML
- ALTER LOAD
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL EXPORT
- CANCEL REFRESH MATERIALIZED VIEW
- CREATE ROUTINE LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- REFRESH MATERIALIZED VIEW
- RESUME ROUTINE LOAD
- SELECT
- SHOW ALTER TABLE
- SHOW ALTER MATERIALIZED VIEW
- SHOW BACKUP
- SHOW CATALOGS
- SHOW CREATE CATALOG
- SHOW CREATE MATERIALIZED VIEW
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW MATERIALIZED VIEWS
- SHOW PARTITIONS
- SHOW PROPERTY
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- SPARK LOAD
- STOP ROUTINE LOAD
- STREAM LOAD
- SUBMIT TASK
- UPDATE
- Auxiliary Commands
- Data Types
- Keywords
- AUTO_INCREMENT
- Function Reference
- Java UDFs
- Window functions
- Lambda expression
- Aggregate Functions
- array_agg
- avg
- any_value
- approx_count_distinct
- bitmap
- bitmap_agg
- count
- grouping
- grouping_id
- hll_empty
- hll_hash
- hll_raw_agg
- hll_union
- hll_union_agg
- max
- max_by
- min
- multi_distinct_sum
- multi_distinct_count
- percentile_approx
- percentile_cont
- percentile_disc
- retention
- stddev
- stddev_samp
- sum
- variance, variance_pop, var_pop
- var_samp
- window_funnel
- Array Functions
- array_agg
- array_append
- array_avg
- array_concat
- array_contains
- array_contains_all
- array_cum_sum
- array_difference
- array_distinct
- array_filter
- array_intersect
- array_join
- array_length
- array_map
- array_max
- array_min
- array_position
- array_remove
- array_slice
- array_sort
- array_sortby
- array_sum
- arrays_overlap
- array_to_bitmap
- cardinality
- element_at
- reverse
- unnest
- Bit Functions
- Bitmap Functions
- base64_to_bitmap
- bitmap_agg
- bitmap_and
- bitmap_andnot
- bitmap_contains
- bitmap_count
- bitmap_from_string
- bitmap_empty
- bitmap_has_any
- bitmap_hash
- bitmap_intersect
- bitmap_max
- bitmap_min
- bitmap_or
- bitmap_remove
- bitmap_to_array
- bitmap_to_base64
- bitmap_to_string
- bitmap_union
- bitmap_union_count
- bitmap_union_int
- bitmap_xor
- intersect_count
- sub_bitmap
- to_bitmap
- JSON Functions
- Overview of JSON functions and operators
- JSON operators
- JSON constructor functions
- JSON query and processing functions
- Map Functions
- Binary Functions
- Conditional Functions
- Cryptographic Functions
- Date Functions
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_format
- date_slice
- date_sub, subdate
- date_trunc
- datediff
- day
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_add
- hours_diff
- hours_sub
- microseconds_add
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- months_sub
- now
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_date
- to_days
- unix_timestamp
- utc_timestamp
- week
- week_iso
- weekofyear
- weeks_add
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- Geographic Functions
- Math Functions
- String Functions
- append_trailing_char_if_absent
- ascii
- char
- char_length
- character_length
- concat
- concat_ws
- ends_with
- find_in_set
- group_concat
- hex
- hex_decode_binary
- hex_decode_string
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- money_format
- null_or_empty
- parse_url
- repeat
- replace
- reverse
- right
- rpad
- rtrim
- space
- split
- split_part
- starts_with
- strleft
- strright
- substring
- trim
- ucase
- unhex
- upper
- Pattern Matching Functions
- Percentile Functions
- Scalar Functions
- Utility Functions
- cast function
- hash function
- System variables
- User-defined variables
- Error code
- System limits
- SQL Reference
- FAQ
- Benchmark
- Developers
- Contribute to StarRocks
- Code Style Guides
- Use the debuginfo file for debugging
- Development Environment
- Trace Tools
- Integration
unnest
Description
UNNEST is a table function that takes an array and converts elements in that array into multiple rows of a table. The conversion is also known as "flattening".
You can use Lateral Join with UNNEST to implement common conversions, for example, from STRING, ARRAY, or BITMAP to multiple rows. For more information, see Lateral join.
From v2.5, UNNEST can take a variable number of array parameters. The arrays can vary in type and length (number of elements). If the arrays have different lengths, the largest length prevails, which means nulls will be added to arrays that are less than this length. See Example 2 for more information.
Syntax
unnest(array0[, array1 ...])
Parameters
array
: the array you want to convert. It must be an array or expression that can evaluate to an ARRAY data type. You can specify one or more arrays or array expressions.
Return value
Returns the multiple rows converted from the array. The type of return value depends on the types of elements in the array.
For the element types supported in an array, see ARRAY.
Usage notes
- UNNEST is a table function. It must be used with Lateral Join but the keyword Lateral Join does not need to be explicitly specified.
- If the array expression evaluates to NULL or it is empty, no rows will be returned.
- If an element in the array is NULL, NULL is returned for that element.
Examples
Example 1: UNNEST takes one parameter
-- Create table student_score where scores is an ARRAY column.
CREATE TABLE student_score
(
`id` bigint(20) NULL COMMENT "",
`scores` ARRAY<int> NULL COMMENT ""
)
DUPLICATE KEY (id)
DISTRIBUTED BY HASH(`id`) BUCKETS 1;
-- Insert data into this table.
INSERT INTO student_score VALUES
(1, [80,85,87]),
(2, [77, null, 89]),
(3, null),
(4, []),
(5, [90,92]);
-- Query data from this table.
SELECT * FROM student_score ORDER BY id;
+------+--------------+
| id | scores |
+------+--------------+
| 1 | [80,85,87] |
| 2 | [77,null,89] |
| 3 | NULL |
| 4 | [] |
| 5 | [90,92] |
+------+--------------+
-- Use UNNEST to flatten the scores column into multiple rows.
SELECT id, scores, unnest FROM student_score, unnest(scores);
+------+--------------+--------+
| id | scores | unnest |
+------+--------------+--------+
| 1 | [80,85,87] | 80 |
| 1 | [80,85,87] | 85 |
| 1 | [80,85,87] | 87 |
| 2 | [77,null,89] | 77 |
| 2 | [77,null,89] | NULL |
| 2 | [77,null,89] | 89 |
| 5 | [90,92] | 90 |
| 5 | [90,92] | 92 |
+------+--------------+--------+
[80,85,87] corresponding to id = 1
is converted into three rows.
[77,null,89] corresponding to id = 2
retains the null value.
scores
corresponding to id = 3
and id = 4
are NULL and empty, which are skipped.
Example 2: UNNEST takes multiple parameters
-- Create table example_table where the type and scores columns vary in type.
CREATE TABLE example_table (
id varchar(65533) NULL COMMENT "",
type varchar(65533) NULL COMMENT "",
scores ARRAY<int> NULL COMMENT ""
) ENGINE=OLAP
DUPLICATE KEY(id)
COMMENT "OLAP"
DISTRIBUTED BY HASH(id) BUCKETS 1
PROPERTIES (
"replication_num" = "3");
-- Insert data into the table.
INSERT INTO example_table VALUES
("1", "typeA;typeB", [80,85,88]),
("2", "typeA;typeB;typeC", [87,90,95]);
-- Query data from the table.
SELECT * FROM example_table;
+------+-------------------+------------+
| id | type | scores |
+------+-------------------+------------+
| 1 | typeA;typeB | [80,85,88] |
| 2 | typeA;typeB;typeC | [87,90,95] |
+------+-------------------+------------+
-- Use UNNEST to convert type and scores into multiple rows.
SELECT id, unnest.type, unnest.scores
FROM example_table, unnest(split(type, ";"), scores) as unnest(type,scores);
+------+-------+--------+
| id | type | scores |
+------+-------+--------+
| 1 | typeA | 80 |
| 1 | typeB | 85 |
| 1 | NULL | 88 |
| 2 | typeA | 87 |
| 2 | typeB | 90 |
| 2 | typeC | 95 |
+------+-------+--------+
type
and scores
in UNNEST
vary in type and length.
type
is a VARCHAR column while scores
is an ARRAY column. The split() function is used to convert type
into ARRAY.
For id = 1
, type
is converted into ["typeA","typeB"], which has two elements.
For id = 2
, type
is converted into ["typeA","typeB","typeC"], which has three elements.
To ensure consistent numbers of rows for each id
, a null element is added to ["typeA","typeB"].