- StarRocks
- Introduction to StarRocks
- Quick Start
- Deployment
- Deployment overview
- Prepare
- Deploy
- Deploy classic StarRocks
- Deploy and use shared-data StarRocks
- Manage
- Table Design
- Data Loading
- Concepts
- Overview of data loading
- Load data from a local file system or a streaming data source using HTTP PUT
- Load data from HDFS or cloud storage
- Continuously load data from Apache Kafka®
- Bulk load using Apache Sparkâ„¢
- Load data using INSERT
- Load data using Stream Load transaction interface
- Realtime synchronization from MySQL
- Continuously load data from Apache Flink®
- Change data through loading
- Transform data at loading
- Data Unloading
- Query Data Sources
- Query Acceleration
- Gather CBO statistics
- Synchronous materialized view
- Asynchronous materialized view
- Colocate Join
- Lateral Join
- Query Cache
- Index
- Computing the Number of Distinct Values
- Sorted streaming aggregate
- Administration
- Management
- Data recovery
- User Privilege and Authentication
- Performance Tuning
- Reference
- SQL Reference
- User Account Management
- Cluster Management
- ADD SQLBLACKLIST
- ADMIN CANCEL REPAIR TABLE
- ADMIN CHECK TABLET
- ADMIN REPAIR TABLE
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- CREATE RESOURCE GROUP
- DELETE SQLBLACKLIST
- DROP FILE
- DROP RESOURCE GROUP
- EXPLAIN
- INSTALL PLUGIN
- KILL
- SET
- SHOW BACKENDS
- SHOW BROKER
- SHOW COMPUTE NODES
- SHOW FILE
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROC
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW SQLBLACKLIST
- SHOW TABLE STATUS
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER MATERIALIZED VIEW
- ALTER TABLE
- ALTER VIEW
- ALTER RESOURCE
- ANALYZE TABLE
- BACKUP
- CANCEL ALTER TABLE
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE ANALYZE
- CREATE DATABASE
- CREATE EXTERNAL CATALOG
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE RESOURCE
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP ANALYZE
- DROP STATS
- DROP CATALOG
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP RESOURCE
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- HLL
- KILL ANALYZE
- RECOVER
- REFRESH EXTERNAL TABLE
- RESTORE
- SET CATALOG
- SHOW ANALYZE JOB
- SHOW ANALYZE STATUS
- SHOW META
- SHOW RESOURCES
- SHOW FUNCTION
- TRUNCATE TABLE
- USE
- DML
- ALTER LOAD
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL EXPORT
- CANCEL REFRESH MATERIALIZED VIEW
- CREATE ROUTINE LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- REFRESH MATERIALIZED VIEW
- RESUME ROUTINE LOAD
- SELECT
- SHOW ALTER TABLE
- SHOW ALTER MATERIALIZED VIEW
- SHOW BACKUP
- SHOW CATALOGS
- SHOW CREATE CATALOG
- SHOW CREATE MATERIALIZED VIEW
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW MATERIALIZED VIEWS
- SHOW PARTITIONS
- SHOW PROPERTY
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- SPARK LOAD
- STOP ROUTINE LOAD
- STREAM LOAD
- SUBMIT TASK
- UPDATE
- Auxiliary Commands
- Data Types
- Keywords
- AUTO_INCREMENT
- Function Reference
- Java UDFs
- Window functions
- Lambda expression
- Aggregate Functions
- array_agg
- avg
- any_value
- approx_count_distinct
- bitmap
- bitmap_agg
- count
- grouping
- grouping_id
- hll_empty
- hll_hash
- hll_raw_agg
- hll_union
- hll_union_agg
- max
- max_by
- min
- multi_distinct_sum
- multi_distinct_count
- percentile_approx
- percentile_cont
- percentile_disc
- retention
- stddev
- stddev_samp
- sum
- variance, variance_pop, var_pop
- var_samp
- window_funnel
- Array Functions
- array_agg
- array_append
- array_avg
- array_concat
- array_contains
- array_contains_all
- array_cum_sum
- array_difference
- array_distinct
- array_filter
- array_intersect
- array_join
- array_length
- array_map
- array_max
- array_min
- array_position
- array_remove
- array_slice
- array_sort
- array_sortby
- array_sum
- arrays_overlap
- array_to_bitmap
- cardinality
- element_at
- reverse
- unnest
- Bit Functions
- Bitmap Functions
- base64_to_bitmap
- bitmap_agg
- bitmap_and
- bitmap_andnot
- bitmap_contains
- bitmap_count
- bitmap_from_string
- bitmap_empty
- bitmap_has_any
- bitmap_hash
- bitmap_intersect
- bitmap_max
- bitmap_min
- bitmap_or
- bitmap_remove
- bitmap_to_array
- bitmap_to_base64
- bitmap_to_string
- bitmap_union
- bitmap_union_count
- bitmap_union_int
- bitmap_xor
- intersect_count
- sub_bitmap
- to_bitmap
- JSON Functions
- Overview of JSON functions and operators
- JSON operators
- JSON constructor functions
- JSON query and processing functions
- Map Functions
- Binary Functions
- Conditional Functions
- Cryptographic Functions
- Date Functions
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_format
- date_slice
- date_sub, subdate
- date_trunc
- datediff
- day
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_add
- hours_diff
- hours_sub
- microseconds_add
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- months_sub
- now
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_date
- to_days
- unix_timestamp
- utc_timestamp
- week
- week_iso
- weekofyear
- weeks_add
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- Geographic Functions
- Math Functions
- String Functions
- append_trailing_char_if_absent
- ascii
- char
- char_length
- character_length
- concat
- concat_ws
- ends_with
- find_in_set
- group_concat
- hex
- hex_decode_binary
- hex_decode_string
- instr
- lcase
- left
- length
- locate
- lower
- lpad
- ltrim
- money_format
- null_or_empty
- parse_url
- repeat
- replace
- reverse
- right
- rpad
- rtrim
- space
- split
- split_part
- starts_with
- strleft
- strright
- substring
- trim
- ucase
- unhex
- upper
- Pattern Matching Functions
- Percentile Functions
- Scalar Functions
- Utility Functions
- cast function
- hash function
- System variables
- User-defined variables
- Error code
- System limits
- SQL Reference
- FAQ
- Benchmark
- Developers
- Contribute to StarRocks
- Code Style Guides
- Use the debuginfo file for debugging
- Development Environment
- Trace Tools
- Integration
Sorted streaming aggregate
Common aggregation methods in database systems include hash aggregate and sort aggregate.
From v2.5 onwards, StarRocks supports sorted streaming aggregate.
Working principles
Aggregate nodes (AGG) are mainly responsible for handling GROUP BY and aggregate functions.
Sorted streaming aggregate can group data by comparing GROUP BY keys according to the sequence of the keys, without the need to create a hash table. This effectively reduces memory resources consumed by aggregation. For queries with a high aggregation cardinality, sorted streaming aggregate improves aggregation performance and reduces memory usage.
You can enable sorted streaming aggregate by setting the following variable:
set enable_sort_aggregate=true;
Limits
- The keys in GROUP BY must have a sequence. For example, if the sort key is
k1, k2, k3
, then:GROUP BY k1
andGROUP BY k1, k2
are allowed.GROUP BY k1, k3
does not follow the sort key sequence. Therefore, sorted streaming aggregate cannot take effect on such a clause.
- The selected partition must be a single partition (because the same key may be distributed on different machines in different partitions).
- The GROUP BY keys must have the same distribution as the bucket keys specified when you create a table. For example, if a table has three columns
k1, k2, k3
, the bucket key can bek1
ork1, k2
.- If the bucket key is
k1
, theGROUP BY
key can bek1
,k1, k2
, ork1, k2, k3
. - If the bucket key is
k1, k2
, the GROUP BY key can bek1, k2
ork1, k2, k3
. - If the query plans do not meet this requirement, the sorted streaming aggregate feature cannot take effect even if this feature is enabled.
- If the bucket key is
- Sorted streaming aggregate works only for first-stage aggregation (that is, there is only one Scan node under the AGG node).
Examples
Create a table and insert data.
CREATE TABLE `test_sorted_streaming_agg_basic` ( `id_int` int(11) NOT NULL COMMENT "", `id_string` varchar(100) NOT NULL COMMENT "" ) ENGINE=OLAP DUPLICATE KEY(`id_int`)COMMENT "OLAP" DISTRIBUTED BY HASH(`id_int`) BUCKETS 10 PROPERTIES ("replication_num" = "3"); INSERT INTO test_sorted_streaming_agg_basic VALUES (1, 'v1'), (2, 'v2'), (3, 'v3'), (1, 'v4');
Enable sorted streaming aggregate and use EXPLAIN to query the SQL profile.
set enable_sort_aggregate = true; explain costs select id_int, max(id_string) from test_sorted_streaming_agg_basic group by id_int;
Check whether sorted streaming aggregate is enabled
View the results of EXPLAIN costs
. If the sorted streaming
field is true
in the AGG node, this feature is enabled.
| |
| 1:AGGREGATE (update finalize) |
| | aggregate: max[([2: id_string, VARCHAR, false]); args: VARCHAR; result: VARCHAR; args nullable: false; result nullable: true] |
| | group by: [1: id_int, INT, false] |
| | sorted streaming: true |
| | cardinality: 1 |
| | column statistics: |
| | * id_int-->[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN |
| | * max-->[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN |
| | |
| 0:OlapScanNode |
| table: test_sorted_streaming_agg_basic, rollup: test_sorted_streaming_agg_basic |
| preAggregation: on |
| partitionsRatio=1/1, tabletsRatio=10/10 |
| tabletList=30672,30674,30676,30678,30680,30682,30684,30686,30688,30690 |
| actualRows=0, avgRowSize=2.0 |
| cardinality: 1 |
| column statistics: |
| * id_int-->[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN |
| * id_string-->[-Infinity, Infinity, 0.0, 1.0, 1.0] UNKNOWN |