- StarRocks
- Introduction to StarRocks
- Quick Start
- Table Design
- Data Loading
- Concepts
- Overview of data loading
- Load data from a local file system or a streaming data source using HTTP PUT
- Load data from HDFS or cloud storage
- Continuously load data from Apache Kafka®
- Bulk load using Apache Spark™
- Load data using INSERT
- Load data using Stream Load transaction interface
- Synchronize data from MySQL in real time
- Continuously load data from Apache Flink®
- Change data through loading
- Transform data at loading
- Data Unloading
- Query Data Sources
- Query Acceleration
- Administration
- Deployment
- Management
- Data recovery
- User Privilege and Authentication
- Performance Tuning
- Reference
- SQL Reference
- User Account Management
- Cluster Management
- ADD SQLBLACKLIST
- ADMIN CANCEL REPAIR TABLE
- ADMIN CHECK TABLET
- ADMIN REPAIR TABLE
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- CREATE RESOURCE GROUP
- DELETE SQLBLACKLIST
- DROP FILE
- DROP RESOURCE GROUP
- EXPLAIN
- INSTALL PLUGIN
- KILL
- SET
- SHOW BACKENDS
- SHOW BROKER
- SHOW COMPUTE NODES
- SHOW FILE
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROC
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW SQLBLACKLIST
- SHOW TABLE STATUS
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER MATERIALIZED VIEW
- ALTER TABLE
- ALTER VIEW
- ALTER RESOURCE
- ANALYZE TABLE
- BACKUP
- CANCEL ALTER TABLE
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE ANALYZE
- CREATE EXTERNAL CATALOG
- CREATE DATABASE
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE RESOURCE
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP ANALYZE
- DROP STATS
- DROP CATALOG
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP RESOURCE
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- HLL
- KILL ANALYZE
- RECOVER
- REFRESH EXTERNAL TABLE
- RESTORE
- SHOW ANALYZE JOB
- SHOW ANALYZE STATUS
- SHOW META
- SHOW RESOURCES
- SHOW FUNCTION
- TRUNCATE TABLE
- USE
- DML
- ALTER LOAD
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL EXPORT
- CANCEL REFRESH MATERIALIZED VIEW
- CREATE ROUTINE LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- REFRESH MATERIALIZED VIEW
- RESUME ROUTINE LOAD
- SELECT
- SHOW ALTER TABLE
- SHOW ALTER MATERIALIZED VIEW
- SHOW BACKUP
- SHOW CATALOGS
- SHOW CREATE MATERIALIZED VIEW
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW MATERIALIZED VIEW
- SHOW PARTITIONS
- SHOW PROPERTY
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- SPARK LOAD
- STOP ROUTINE LOAD
- STREAM LOAD
- Auxiliary Commands
- Data Types
- Keywords
- Function Reference
- Java UDFs
- Window functions
- Lambda expression
- Aggregate Functions
- Array Functions
- array_agg
- array_append
- array_avg
- array_concat
- array_contains
- array_contains_all
- array_cum_sum
- array_difference
- array_distinct
- array_filter
- array_intersect
- array_join
- array_length
- array_map
- array_max
- array_min
- array_position
- array_remove
- array_slice
- array_sort
- array_sortby
- array_sum
- arrays_overlap
- array_to_bitmap
- reverse
- unnest
- Bit Functions
- Bitmap Functions
- base64_to_bitmap
- bitmap_and
- bitmap_andnot
- bitmap_contains
- bitmap_count
- bitmap_from_string
- bitmap_empty
- bitmap_has_any
- bitmap_hash
- bitmap_intersect
- bitmap_max
- bitmap_min
- bitmap_or
- bitmap_remove
- bitmap_to_array
- bitmap_to_base64
- bitmap_to_string
- bitmap_union
- bitmap_union_count
- bitmap_union_int
- bitmap_xor
- intersect_count
- sub_bitmap
- to_bitmap
- Conditional Functions
- Cryptographic Functions
- Date Functions
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_format
- date_slice
- date_sub, subdate
- date_trunc
- datediff
- day
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_sub
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- now
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_date
- to_days
- unix_timestamp
- utc_timestamp
- week
- weekofyear
- weeks_add
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- Geographic Functions
- JSON Functions
- Overview of JSON functions and operators
- JSON operators
- JSON constructor functions
- JSON query and processing functions
- Map Functions
- Math Functions
- String Functions
- Pattern Matching Functions
- Percentile Functions
- Scalar Functions
- Utility Functions
- cast function
- hash function
- System variables
- User-defined variables
- Error code
- System limits
- SQL Reference
- FAQ
- Deploy
- Data Migration
- SQL
- Query Dump
- Other FAQs
- Benchmark
- Developers
- Contribute to StarRocks
- Code Style Guides
- Use the debuginfo file for debugging
- Development Environment
- Trace Tools
- Integration
count
Description
Returns the total number of rows specified by an expression.
This function has three variations:
COUNT(*)
counts all rows in a table, no matter whether they contain NULL values.COUNT(expr)
counts the number of rows with non-NULL values in a specific column.COUNT(DISTINCT expr)
counts the number of distinct non-NULL values in a column.
COUNT(DISTINCT expr)
is used for exact count distinct. If you require higher count distinct performance, see Use bitmap for exact count discount.
From StarRocks 2.4 onwards, you can use multiple COUNT(DISTINCT) in one statement.
Syntax
COUNT(expr)
COUNT(DISTINCT expr [,expr,...])`
Parameters
expr
: the column or expression based on which count()
is performed. If expr
is a column name, the column can be of any data type.
Return value
Returns a numeric value. If no rows can be found, 0 is returned. This function ignores NULL values.
Examples
Suppose there is a table named test
. Query the country, category, and supplier of each order by id
.
select * from test order by id;
+------+----------+----------+------------+
| id | country | category | supplier |
+------+----------+----------+------------+
| 1001 | US | A | supplier_1 |
| 1002 | Thailand | A | supplier_2 |
| 1003 | Turkey | B | supplier_3 |
| 1004 | US | A | supplier_2 |
| 1005 | China | C | supplier_4 |
| 1006 | Japan | D | supplier_3 |
| 1007 | Japan | NULL | supplier_5 |
+------+----------+----------+------------+
Example 1:Count the number of rows in table test
.
select count(*) from test;
+----------+
| count(*) |
+----------+
| 7 |
+----------+
Example 2:Count the number of values in the id
column.
select count(id) from test;
+-----------+
| count(id) |
+-----------+
| 7 |
+-----------+
Example 3: Count the number of values in the category
column while ignoring NULL values.
select count(category) from test;
+-----------------+
| count(category) |
+-----------------+
| 6 |
+-----------------+
Example 4:Count the number of distinct values in the category
column.
select count(distinct category) from test;
+-------------------------+
| count(DISTINCT category) |
+-------------------------+
| 4 |
+-------------------------+
Example 5:Count the number of combinations that can be formed by category
and supplier
.
select count(distinct category, supplier) from test;
+------------------------------------+
| count(DISTINCT category, supplier) |
+------------------------------------+
| 5 |
+------------------------------------+
In the output, the combination with id
1004 duplicates with the combination with id
1002. They are counted only once. The combination with id
1007 has a NULL value and is not counted.
Example 6: Use multiple COUNT(DISTINCT) in one statement.
select count(distinct country, category), count(distinct country,supplier) from test;
+-----------------------------------+-----------------------------------+
| count(DISTINCT country, category) | count(DISTINCT country, supplier) |
+-----------------------------------+-----------------------------------+
| 6 | 7 |
+-----------------------------------+-----------------------------------+