- StarRocks
- Introduction to StarRocks
- Quick Start
- Table Design
- Data Loading
- Concepts
- Overview of data loading
- Load data from a local file system or a streaming data source using HTTP PUT
- Load data from HDFS or cloud storage
- Continuously load data from Apache Kafka®
- Bulk load using Apache Sparkâ„¢
- Load data using INSERT
- Synchronize data from MySQL in real time
- Continuously load data from Apache Flink®
- Change data through loading
- Transform data at loading
- Data Unloading
- Query Data Sources
- Query Acceleration
- Administration
- Deployment
- Management
- Data Recovery
- User Privilege and Authentication
- Performance Tuning
- Reference
- SQL Reference
- User Account Management
- Cluster Management
- ADD SQLBLACKLIST
- ADMIN CANCEL REPAIR TABLE
- ADMIN CHECK TABLET
- ADMIN REPAIR TABLE
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER RESOURCE GROUP
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- CREATE RESOURCE GROUP
- DELETE SQLBLACKLIST
- DROP FILE
- DROP RESOURCE GROUP
- EXPLAIN
- INSTALL PLUGIN
- KILL
- SET
- SHOW BACKENDS
- SHOW BROKER
- SHOW FILE
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW PROC
- SHOW PROCESSLIST
- SHOW RESOURCE GROUP
- SHOW SQLBLACKLIST
- SHOW TABLE STATUS
- SHOW VARIABLES
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER TABLE
- ALTER VIEW
- ALTER RESOURCE
- BACKUP
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE DATABASE
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE RESOURCE
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP RESOURCE
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- HLL
- RECOVER
- RESTORE
- SHOW RESOURCES
- SHOW FUNCTION
- TRUNCATE TABLE
- USE
- DML
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- CANCEL EXPORT
- CANCEL REFRESH MATERIALIZED VIEW
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- RESUME ROUTINE LOAD
- ROUTINE LOAD
- SELECT
- SHOW ALTER TABLE
- SHOW BACKUP
- SHOW CREATE TABLE
- SHOW CREATE VIEW
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW PARTITIONS
- SHOW PROPERTY
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- SPARK LOAD
- STOP ROUTINE LOAD
- STREAM LOAD
- Auxiliary Commands
- Data Types
- Function Reference
- Java UDFs
- Window functions
- Aggregate Functions
- Array Functions
- Bit Functions
- Bitmap Functions
- Conditional Functions
- Cryptographic Functions
- Date Functions
- add_months
- adddate
- convert_tz
- current_date
- current_time
- current_timestamp
- date
- date_add
- date_format
- date_sub, subdate
- date_trunc
- datediff
- day
- dayname
- dayofmonth
- dayofweek
- dayofyear
- days_add
- days_diff
- days_sub
- from_days
- from_unixtime
- hour
- hours_add
- hours_diff
- hours_sub
- microseconds_add
- microseconds_sub
- minute
- minutes_add
- minutes_diff
- minutes_sub
- month
- monthname
- months_add
- months_diff
- months_sub
- now
- quarter
- second
- seconds_add
- seconds_diff
- seconds_sub
- str_to_date
- str2date
- time_slice
- time_to_sec
- timediff
- timestamp
- timestampadd
- timestampdiff
- to_date
- to_days
- unix_timestamp
- utc_timestamp
- week
- weekofyear
- weeks_add
- weeks_diff
- weeks_sub
- year
- years_add
- years_diff
- years_sub
- Geographic Functions
- JSON Functions
- Overview of JSON functions and operators
- JSON operators
- JSON constructor functions
- JSON query and processing functions
- Math Functions
- String Functions
- Pattern Matching Functions
- Percentile Functions
- Scalar Functions
- Utility Functions
- cast function
- hash function
- System variables
- Error code
- System limits
- SQL Reference
- FAQ
- Deploy
- Data Migration
- SQL
- Other FAQs
- Benchmark
- Developers
- Contribute to StarRocks
- Code Style Guides
- Use the debuginfo file for debugging
- Development Environment
- Trace Tools
- Integration
unnest
Description
UNNEST is a table function that takes an array and converts elements in that array into multiple rows of a table. The conversion is also known as "flattening".
You can use Lateral join with UNNEST to implement common conversions, for example, from STRING, ARRAY, or BITMAP to multiple rows. For more information, see Lateral join.
Syntax
unnest(array)
Parameters
array
: the array you want to convert. It must be an array or an expression that can evaluate to an ARRAY data type.
Return value
Returns the multiple rows converted from the array. The type of return value depends on the types of elements in the array.
For the element types supported in an array, see ARRAY.
Usage notes
- UNNEST is a table function. It must be used with Lateral Join but the keyword Lateral Join does not need to be explicitly specified.
- If the array expression evaluates to NULL or it is empty, no rows will be returned.
- If an element in the array is NULL, NULL is returned for that element.
Examples
-- Create table student_score where scores is an ARRAY column.
CREATE TABLE student_score
(
`id` bigint(20) NULL COMMENT "",
`scores` ARRAY<int> NULL COMMENT ""
)
DUPLICATE KEY (id)
DISTRIBUTED BY HASH(`id`) BUCKETS 1;
-- Insert data into this table.
INSERT INTO student_score VALUES
(1, [80,85,87]),
(2, [77, null, 89]),
(3, null),
(4, []),
(5, [90,92]);
-- Query data from this table.
SELECT * FROM student_score ORDER BY id;
+------+--------------+
| id | scores |
+------+--------------+
| 1 | [80,85,87] |
| 2 | [77,null,89] |
| 3 | NULL |
| 4 | [] |
| 5 | [90,92] |
+------+--------------+
-- Use UNNEST to flatten the scores column into multiple rows.
SELECT id, scores, unnest FROM student_score, unnest(scores);
+------+--------------+--------+
| id | scores | unnest |
+------+--------------+--------+
| 1 | [80,85,87] | 80 |
| 1 | [80,85,87] | 85 |
| 1 | [80,85,87] | 87 |
| 2 | [77,null,89] | 77 |
| 2 | [77,null,89] | NULL |
| 2 | [77,null,89] | 89 |
| 5 | [90,92] | 90 |
| 5 | [90,92] | 92 |
+------+--------------+--------+
[80,85,87] corresponding to id = 1
is converted into three rows.
[77,null,89] corresponding to id = 2
retains the null value.
scores
corresponding to id = 3
and id = 4
are NULL and empty, which are skipped.