- Introduction
- Quick Start
- Table Design
- Data Loading
- Overview of data loading
- Load data from a local file system or a streaming data source using HTTP push
- Load data from HDFS or cloud storage
- Routine Load
- Spark Load
- Insert Into
- Change data through loading
- Transform data at loading
- Json Loading
- Synchronize data from MySQL
- Load data by using flink-connector-starrocks
- DataX Writer
- Data Export
- Using StarRocks
- Reference
- SQL Reference
- User Account Management
- Cluster Management
- ADMIN CANCEL REPAIR
- ADMIN CHECK TABLET
- ADMIN REPAIR
- ADMIN SET CONFIG
- ADMIN SET REPLICA STATUS
- ADMIN SHOW CONFIG
- ADMIN SHOW REPLICA DISTRIBUTION
- ADMIN SHOW REPLICA STATUS
- ALTER SYSTEM
- CANCEL DECOMMISSION
- CREATE FILE
- DROP FILE
- INSTALL PLUGIN
- SHOW BACKENDS
- SHOW BROKER
- SHOW FILE
- SHOW FRONTENDS
- SHOW FULL COLUMNS
- SHOW INDEX
- SHOW PLUGINS
- SHOW TABLE STATUS
- UNINSTALL PLUGIN
- DDL
- ALTER DATABASE
- ALTER TABLE
- ALTER VIEW
- BACKUP
- CANCEL BACKUP
- CANCEL RESTORE
- CREATE DATABASE
- CREATE INDEX
- CREATE MATERIALIZED VIEW
- CREATE REPOSITORY
- CREATE RESOURCE
- CREATE TABLE AS SELECT
- CREATE TABLE LIKE
- CREATE TABLE
- CREATE VIEW
- CREATE FUNCTION
- DROP DATABASE
- DROP INDEX
- DROP MATERIALIZED VIEW
- DROP REPOSITORY
- DROP RESOURCE
- DROP TABLE
- DROP VIEW
- DROP FUNCTION
- HLL
- RECOVER
- RESTORE
- SHOW RESOURCES
- SHOW FUNCTION
- TRUNCATE TABLE
- DML
- ALTER ROUTINE LOAD
- BROKER LOAD
- CANCEL LOAD
- DELETE
- EXPORT
- GROUP BY
- INSERT
- PAUSE ROUTINE LOAD
- RESUME ROUTINE LOAD
- ROUTINE LOAD
- SELECT
- SHOW ALTER
- SHOW BACKUP
- SHOW DATA
- SHOW DATABASES
- SHOW DELETE
- SHOW DYNAMIC PARTITION TABLES
- SHOW EXPORT
- SHOW LOAD
- SHOW PARTITIONS
- SHOW PROPERTY
- SHOW REPOSITORIES
- SHOW RESTORE
- SHOW ROUTINE LOAD
- SHOW ROUTINE LOAD TASK
- SHOW SNAPSHOT
- SHOW TABLES
- SHOW TABLET
- SHOW TRANSACTION
- SPARK LOAD
- STOP ROUTINE LOAD
- STREAM LOAD
- Data Types
- Auxiliary Commands
- Function Reference
- Java UDFs
- Window Function
- Date Functions
- convert_tz
- curdate
- current_timestamp
- curtime
- datediff
- date_add
- date_format
- date_sub
- date_trunc
- day
- dayname
- dayofmonth
- dayofweek
- dayofyear
- from_days
- from_unixtime
- hour
- minute
- month
- monthname
- now
- quarter
- second
- str_to_date
- timediff
- timestampadd
- timestampdiff
- to_date
- to_days
- unix_timestamp
- utc_timestamp
- weekofyear
- year
- hours_diff
- minutes_diff
- months_diff
- seconds_diff
- weeks_diff
- years_diff
- Aggregate Functions
- Geographic Functions
- String Functions
- JSON Functions
- Overview of JSON functions and operators
- JSON constructor functions
- JSON query and processing functions
- JSON operators
- Aggregate Functions
- Bitmap Functions
- Array Functions
- cast function
- hash function
- Cryptographic Functions
- Math Functions
- Utility Functions
- System variables
- Error code
- System limits
- SQL Reference
- Administration
- FAQ
- Deploy
- Data Migration
- SQL
- Other FAQs
- Benchmark
- Developers
- Contribute to StarRocks
- Code Style Guides
- Use the debuginfo file for debugging
- Development Environment
- Trace Tools
- Integration
Edit
PERCENTILE_APPROX
description
Syntax
PERCENTILE_APPROX(expr, DOUBLE p[, DOUBLE compression])
It returns the approximation of the pth percentile , where the value of p is between 0 and 1.
Compression parameter is optional and has a setting range of [2048, 10000]. The larger the value, the higher the accuracy, the larger the memory consumption, and the longer the calculation time. If it is not specified or not beyond the range of [2048, 10000], the function runs with a default compression parameter of 10000.
This function uses fixed size memory, so less memory can be used for columns with high cardinality, and can be used to calculate statistics such as tp99.
example
MySQL > select `table`, percentile_approx(cost_time,0.99)
from log_statis
group by `table`;
+----------+--------------------------------------+
| table | percentile_approx(`cost_time`, 0.99) |
+----------+--------------------------------------+
| test | 54.22 |
+----------+--------------------------------------+
MySQL > select `table`, percentile_approx(cost_time,0.99, 4096)
from log_statis
group by `table`;
+----------+----------------------------------------------+
| table | percentile_approx(`cost_time`, 0.99, 4096.0) |
+----------+----------------------------------------------+
| test | 54.21 |
+----------+----------------------------------------------+
keyword
PERCENTILE_APPROX,PERCENTILE,APPROX
Edit
In this article